新闻动态

北方湖泊中气体浓度及输移速度对CO2通量变化的贡献

作者:D. Rudberg, J. Schenk, G. Pajala, H. Sawakuchi, A. Sieczko, I. Sundgren, et al.

The CO( 2)flux (FCO2) from lakes to the atmosphere is a large component of the global carbon cycle anddepends on the air-water CO2concentration gradient (Delta CO2) and the gas transfer velocity (k). Both Delta CO2 and k can vary on multiple timescales and understanding their contributions toFCO(2)is important for explaining var-iability influxes and developing optimal sampling designs. We measuredFCO2 and Delta CO(2 )and derivedkforone full ice-free period in 18 lakes usingfloating chambers and estimated the contributions of Delta CO2 and k to FCO2 variability. Generally, kcontributed more than Delta CO2to short-term (1-9d) FCO2 variability. With in creased temporal period, the contribution of k to FCO2 variability decreased, and in some lakes resulted in Delta CO2 contrib-uting more thank to FCO2 variability over the full ice-free period. Increased contribution of Delta CO2 to FCO2 vari-ability over time occurred across all lakes but was most apparent in large-volume southern-boreal lakes and indeeper (>2m) parts of lakes, whereaskwas linked to FCO(2 )variability in shallow waters. Accordingly, knowing the variability of bothk and Delta CO(2 )over time and space is needed for accurate modeling of F CO2 from these vari-ables. We conclude that priority in FCO(2 )assessments should be given to direct measurements of FCO2 at multiplesites when possible, or otherwise from spatially distributed measurements of Delta CO(2 )combined with k- models that incorporate spatial variability of lake thermal structure and meteorology.

来源:Limnology and Oceanography. 2024 Vol. 69 Issue 4 Pages 818-833. DOI: 10.1002/lno.12528