范兴旺
范兴旺 男,1989年生,副研究员,硕士生导师 E-mail:xwfan@niglas.ac.cn 传 真:025-57714759 |
中国科学院大学个人主页:https://people.ucas.edu.cn/~xwfan
研究领域及方向:土壤水热极端事件演变过程及其生态效应、土壤水分遥感及真实性检验
简历:
范兴旺:男,1989年生,安徽无为人。2009年、2012年分别获得东南大学测绘工程学士、摄影测量与遥感硕士学位;2015年获得中国科学院大学(中国科学院南京地理与湖泊研究所)地图学与地理系统博士学位,同年留所参加工作。主要从事土壤水热极端事件演变过程及其生态效应、土壤水分遥感及真实性检验研究。发展了多源卫星遥感数据一致性校正的通用方法,基于观测–遥感–模式数据揭示了土壤水分干旱事件的多尺度生消过程,阐明了气候变化背景下土壤干旱和高温复合事件的相互作用机理。
主持国家自然科学基金项目2项,参与重点研发计划和重点基金项目4项。发表第一作者论文18篇,其中SCI论文16篇(含一区Top SCI论文8篇),参与出版专著2部,担任数字水圈专业委员会委员。
代表性论著:
[1] Fan, X., Zhao, X., Liu, Y., Guo, R., Liu, Y. (2022). Soil salinity dynamics impairs radiometer-based soil moisture retrieval over global cropland. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–9.
[2] Fan, X., Zhao, X., Pan, X., Liu, Y., Liu, Y. (2022). Investigating multiple causes of time-varying SMAP soil moisture biases based on core validation sites data. Journal of Hydrology, 612, 128151.
[3] Fan, X., Lu, Y., Liu, Y., Li, T., Xun, S., Zhao, X. (2022). Validation of multiple soil moisture products over an intensive agricultural region: Overall accuracy and diverse responses to precipitation and irrigation events. Remote Sensing, 14(14), 3339.
[4] Fan, X., Liu, Y., Gan, G., Wu, G. (2020). SMAP underestimates soil moisture in vegetation-disturbed areas primarily as a result of biased surface temperature data. Remote Sensing of Environment, 247, 111914.
[5] Fan, X., Liu, Y., Wu, G., Zhao, X. (2020). Compositing the minimum NDVI for daily water surface mapping. Remote Sensing, 12(4), 700.
[6] Fan, X., Liu, Y. (2018). Multisensor Normalized Difference Vegetation Index intercalibration: A comprehensive overview of the causes of and solutions for multisensor differences. IEEE Geoscience and Remote Sensing Magazine, 6(4), 23–45.
[7] Fan, X., Liu, Y., Tao, J., Wang, Y., Zhou, H. (2018). MODIS detection of vegetation changes and investigation of causal factors in Poyang Lake basin, China for 2001-2015. Ecological Indicators, 91, 511–522.
[8] Fan, X., Liu, Y. (2018). Using a MODIS index to quantify MODIS-AVHRRs spectral differences in the visible band. Remote Sensing, 10(1), 61.
[9] Fan, X., Liu, Y. (2018). Intercalibrating the MODIS and AVHRR visible bands over homogeneous land surfaces. IEEE Geoscience and Remote Sensing Letters, 15(1), 83–87.
[10] Fan, X., Liu, Y. (2017). A generalized model for intersensor NDVI calibration and its comparison with regression approaches. IEEE Transactions on Geoscience and Remote Sensing, 55(3), 1842–1852.
[11] Fan, X., Liu, Y. (2017). A comparison of NDVI intercalibration methods. International Journal of Remote Sensing, 38(19), 5273–5290.
[12] Fan, X., Liu, Y. (2016). A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 177–191.
[13] Fan, X., Weng, Y., Tao, J. (2016). Towards decadal soil salinity mapping using Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 52, 32–41.
[14] Fan, X., Liu, Y. (2016). Exploiting Terra-Aqua MODIS relationship in the reflective solar bands for aerosol retrieval. Remote Sensing, 8(12), 996.
[15] Fan, X., Liu, Y., Tao, J., Weng, Y. (2015). Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression. Remote Sensing, 7(1), 488–511.
[16] Fan, X., Liu, Y. (2014). Quantifying the relationship between intersensor images in solar reflective bands: Implications for intercalibration. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7727–7737.
[17] 范兴旺, 刘元波. (2016). 利用共线方程的ALOS DEM制作误差分析, 遥感技术与应用, 30(4), 694–699.
[18] 范兴旺, 翁永玲, 胡伍生, 徐君民, 刘团荣. (2010). IRS-P5立体像对提取 DEM 及精度评价. 遥感技术与应用, 25(4), 547–551.