(1) Xu H, McCarthy M J, Paerl H W, Brookes J D, Zhu G W, Hall N S , Qin B Q, Zhang Y L, Zhu M Y, Hampel J J, Newell S E, Gardne W S. Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: Implications for nutrient management. Limnology and Oceanography, 2021, 66(4): 1492-1509. (IF2020=4.75,中科院二区TOP SCI)
(2) Xu H, Qin B Q, Paerl H W, Peng K, Zhang Q J, Zhu G W, Zhang Y L. Environmental controls of harmful cyanobacterial blooms in Chinese inland waters. Harmful Algae, 2021, 113: 102190.(IF2020=4.27,中科院二区TOP SCI,代表作三)
(3) Xu H, Paerl H W, Zhu G W, Qin B Q, Hall N S, Zhu M Y. Long-term nutrient trends and harmful cyanobacterial bloom potential in hypertrophic Lake Taihu, China. Hydrobiologia, 2017, 787: 229-242.(IF2020=2.69,中科院三区 SCI)
(4) Xu H, Paerl H W, Qin B Q, Zhu G W, Hall N S, Wu Y L. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in hypertrophic Lake Taihu, China. Environmental Science & Technology, 2015, 49: 1051-1059.(IF2020=9.03,中科院一区TOP SCI)
(5) Xu H, Paerl H W, Qin B Q, Zhu G W and Gao G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology & Oceanography, 2010, 55(1): 420 - 432.
(6) Xu H, Zhu G W, Qin B Q, Paerl H W. Growth response of Microcystis spp. to iron enrichment in different regions of Lake Taihu, China. Hydrobiologia, 2013, 700:187-202.
(7) Xu H, Yang L Z, Liu Z P, Yin S X, Zhao G M. Anthropogenic Impact on Surface Water Quality in Taihu Lake Region, China. Pedosphere, 2009, 19(6): 765-778.
(8) Zhao F, Xu H*, Kang L J, Zhao X C. Spatial and seasonal change in algal community structure and its interaction with nutrient dynamics in a gravel-bed urban river. Journal of Hazardous Materials, 2022, 425: 127775. (IF2020=10.59,中科院一区TOP SCI)
(9) Zhao F, Xu H*, Kana T, Zhu G W, Zhan X, Zou W, Zhu M Y, Kang L J, Zhao X C. Improved Membrane Inlet Mass Spectrometer Method for Measuring Dissolved Methane Concentration and Methane Production Rate in a Large Shallow Lake. Water, 2021, 13(19): 2699.(IF2020=3.10,中科院三区 SCI,通讯)
(10) Zhao F, Zhou Y Q, Xu H*, Zhu G W, Zhan X, Zou W, Zhu M Y, Kang L J, Zhao X C. Oxic urban rivers as a potential source of atmospheric methane. Environmental Pollution, 2022, 297: 118769.(IF2020=8.07,中科院二区 TOP SCI)
(11) Zhao F, Zhan X, Xu H*, Zhu G W, Zou W, Zhu M Y, Kang L J, Guo Y L, Zhao X C, Wang Z C, Tang W. New insights into eutrophication management: Importance of temperature and water residence time. Journal of Environmental Sciences, 2021, 111: 229-239.(IF2020=5.57,中科院二区 SCI,通讯)
(12) Ding Y Q, Xu H, Qin B Q, Deng J M, He Y W. Impact of nutrient loading on phytoplankton: a mesocosm experiment in the eutrophic Lake Taihu, China. Hydrobiologia, 2019, 829: 167-187.
(13) Paerl H W, Xu H, Hall N S, Rossignol K L, Joyner A R. Zhu G W & Qin B Q. Nutrient limitation dynamics examined on a multiannual scale in Lake Taihu, China: implications for controlling eutrophication and harmful algal blooms. Journal of Freshwater Ecology, 2015, 30(1): 5-24.
(14) Paerl H W, Xu H, Hall N S, Zhu G W, Qin B Q, Wu Y L, Rossignol K L, Dong L H, McCarthy M J, and Joyner A R. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: Will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa? PloSOne, 2014, 9(11): e113123.
(15) Otten T G, Xu H, Qin B Q, Zhu G W, and Paerl W H. Spatiotemporal Patterns and Ecophysiology of Toxigenic Microcystis Blooms in Lake Taihu, China: Implications for Water Quality Management. ES&T, 2012, 16:40-46.
(16) Paerl H W, Xu H, McCarthy M J, Zhu G W, Qin B Q, Li Y P, Gardner W S. Controlling harmful cyanobacterial blooms ina hyper-eutrophic lake (Lake Taihu, China): The needfor a dual nutrient (N & P) management strategy. Water Research, 2011, 45: 1973-1983. (中科院一区TOP SCI)
(17) Shi K, Zhang Y L, Xu H, Zhu G W, Qin B Q, Huang C H, Liu X H, Zhou Y Q, Lv H. Long-term satellite observations of Microcystin concentrations in Lake Taihu during cyanobacterial bloom periods. Environmental Science & Technology, 2015, 49(11): 6448-6456.(中科院一区TOP SCI)
(18) Zhang X K, Li B L, Xu H, Wells M, Tefsen B, Qin B Q. Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Research, 2019, 151: 500-514.(中科院一区TOP SCI)
(19) Guo C X, Zhu M Y, Xu H, Zhang Y L, Qin B Q, Zhu G W, Wang J J. Spatiotemporal dependency of resource use efficiency on phytoplankton diversity in Lake Taihu. Limnology and Oceanography, 2022, 67(4): 830-842. (中科院二区TOP SCI)
(20) Zou W, Zhu G W, Xu H, Zhu M Y, Zhang Y L, Qin B Q. Temporal dependence of chlorophyll a–nutrient relationships in Lake Taihu: Drivers and management implications. Journal of Environmental Management, 2022, 306: 114476.(中科院二区 TOP SCI)
(21) Zou W, Zhu G W, Xu H, Zhu M Y, Guo C X, Qin B Q, Zhang, Y L. Atmospheric Stilling Promotes Summer Algal Growth in Eutrophic Shallow Lakes. Biology- Basel, 2021, 10: 1222.(中科院二区 SCI)
(22) Paerl H W, Havens K E, Xu H, Zhu G W, McCarthy M J, Newell S E, Scott J T, Hall N S, Otten T G, Qin B Q. Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: The evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia, 2019, 847:4359-4375.
(23) Ding Y Q, Qin B Q, Xu H, Wang X D. Effects of sediment and turbulence on alkaline phosphatase activity and photosynthetic activity of phytoplankton in the shallow hyper-eutrophic Lake Taihu, China. Environmental Science & Pollution Research, 2016, 23: 16183-16193.
(24) 许海, 陈洁, 朱广伟, 秦伯强, 张运林. 水体氮、磷营养盐水平对蓝藻优势形成的影响. 湖泊科学, 2019,31(5): 1239-1247.(EI)
(25) 许海, 陈丹, 陈洁, 朱广伟, 秦伯强, 朱梦圆, 张运林. 氮磷形态与浓度对铜绿微囊藻和斜生栅藻生长的影响. 中国环境科学, 2019, 39(6): 2560-2567. (EI)
(26) 许海, 朱广伟, 秦伯强, 高光. 氮磷比对水华蓝藻优势形成的影响. 中国环境科学, 2011, 31(10): 1676-1683.
(27) 许海, 秦伯强, 朱广伟. 太湖不同湖区夏季蓝藻生长的营养盐限制研究. 中国环境科学, 中国环境科学 2012,32(12):2230-2236.
(28) 许海, 杨林章, 袁兰, 杨林章. pH对几种淡水藻类增殖的影响. 环境科学与技术, 2009, 32(1): 27-30.
(29) 许海, 杨林章, 焦佳国, 杨林章. 太湖上游不同类型过境水氮素污染状况. 生态学杂志, 2008, 27(1): 1-7.
(30) 许海, 杨林章, 刘兆普. 铜绿微囊藻、斜生栅藻生长的氮营养动力学特征. 环境科学研究, 2008, 21(1): 17-37.
(31) 许海, 杨林章, 茅华, 刘兆普. 铜绿微囊藻、斜生栅藻生长的磷营养动力学特征. 生态环境, 2006, 15(5): 921 -924.
(32) 赵星辰, 许海*, 俞洁, 刘明亮, 单亮, 程新良, 朱广伟, 李慧赟, 朱梦圆, 康丽娟. 城镇分布对新安江水系及千岛湖营养盐浓度的影响. 环境科学研究, 2022, 35(4): 864-876.(通讯)
(33) 康丽娟, 许海*, 朱广伟, 朱梦圆, 赵锋. 太湖主要环湖河道沉积物反硝化潜力及其控制因子. 环境科学学报, 2021, 41(4): 1393-1400.(EI,通讯)
(34) 康丽娟, 许海*, 邹伟, 朱广伟, 朱梦圆, 季鹏飞, 陈洁. 菹草对湖泊水质及浮游植物群落结构的影响. 环境科学, 2020, 41(09): 4053-4061.(EI,通讯)
(35) 陈洁, 许海*, 詹旭, 朱广伟, 秦伯强, 张运林. 湖泊沉积物-水界面磷的迁移转化机制与定量研究方法. 湖泊科学, 2019, 31(4): 907-918.(EI,通讯)
(36) 郭宇龙, 曾磊, 许海*, 陈旭清, 郑建中, 詹旭, 朱广伟. 湖泊连通河道蓝藻通量自动监测方法. 环境工程学报. 2021, 15(12): 4077-4087.(通讯)
(37) 赵锋, 许海, 詹旭, 朱广伟, 郭宇龙, 康丽娟, 朱梦圆. 太湖春夏两季反硝化与厌氧氨氧化速率的空间差异及其影响因素. 环境科学, 2021, 42(5): 2296-2302.
(38) 刘志迎, 许海, 詹旭, 朱广伟, 秦伯, 张运林. 蓝藻水华对太湖水柱反硝化作用的影响. 环境科学,2019, 40(3): 253-261.
(39) 陈洁,许海,詹旭,许笛,朱广伟,朱梦圆,季鹏飞,康丽娟. 沉积物参与下氮磷脉冲式输入对太湖藻类生长的影响. 环境科学, 2020, 41(6): 2671-2678.
(40) 季鹏飞, 许海, 詹旭, 朱广伟, 邹伟, 朱梦圆, 康丽娟. 长江中下游湖泊水体氮磷比时空变化特征及其影响因素. 环境科学, 2020, 41(9): 4030-4041.
(41) 郭宇龙, 许海, 陈旭清, 郑建中, 詹旭, 朱广伟, 朱梦圆. 太湖出流河道藻颗粒变化及其水质效应. 环境科学,2020, 42: 242-250.
(42) 王子聪, 许海, 詹旭, 朱广伟, 朱梦圆, 康丽娟, 赵锋, 唐伟, 赵星辰. 天目湖流域沟塘湿地脱氮速率的时空差异. 环境科学研究,2022, 35(4):979-988.
(43) 唐伟, 许海, 詹旭, 朱广伟, 王裕成, 韩轶才, 王子聪, 朱梦圆. 生态浮床对千岛湖水体氮磷净化效果研究. 环境科学研究, 2022, 35(4): 926-935.
(44) 朱广伟, 许海, 朱梦圆, 邹伟, 国超旋, 季鹏飞, 笪文怡, 周永强, 张运林, 秦伯强. 三十年来长江中下游湖泊富营养化状况变迁及其影响因素. 湖泊科学, 2019, 31(6): 1510-1524.
(45) 吴雅丽, 许海, 杨桂军, 朱广伟, 秦伯强. 太湖水体氮素污染状况研究进展. 湖泊科学, 2014, 26(1):19-28.
(46) 吴雅丽, 许海, 杨桂军, 朱广伟, 秦伯强. 太湖春季藻类生长的磷营养盐阈值研究. 中国环境科学, 2013, 494: 1622-1629.
(47) 陈洁, 朱广伟, 许海, 詹旭, 朱梦圆, 笪文怡, 黄亚文. 不同雨强对太湖河网区河道入湖营养盐负荷影响. 环境科学, 2019, 40(11): 4924-4931.
(48) 余茂蕾, 洪国喜, 许海, 朱广伟, 朱梦圆, 权秋梅. 湖泊蓝藻水华对连通河道水质的影响. 环境科学, 2019, 40(2): 603-613.
(49) 金颖薇, 朱广伟, 许海, 朱梦圆. 太湖水华期营养盐空间分异特征与赋存量估算. 环境科学, 2015, 36(3): 936-945.
(50) 韩晓霞, 朱广伟, 许海, Steven W. Wilhelm, 秦伯强. 太湖夏季水体中尿素的来源探析. 环境科学, 2014, 35(7): 2547-2556.
(51) 赵林林, 朱广伟, 许海. 太湖梅梁湾理化指标分层的空间分布特征. 环境科学研究,2013, 26(7) :721-727.
参编专著
(1) 秦伯强, 许海, 董百丽. 湖泊富营养化治理的理论与实践. 高等教育出版社, 2011年, 北京(专著)
(2) 秦伯强,谢平,朱广伟等著. 水域生态系统过程与变化,北京:高等教育出版社,2019年11月(参编第三章)
(3) 沈吉,刘正文,羊向东,张运林,朱广伟,吴庆龙,江和龙,薛滨,编著. 湖泊学. 北京:高等教育出版社,2020年9月(参编第五章)
|